google-play-not-available-title

google-play-not-available-text

Animalia
Arthropoda
Insecta
Lepidoptera
Nymphalidae
Danaus
Danaus chrysippus

African Monarch

Danaus chrysippus
Local Pest Control
Danaus chrysippus
Mobile App
An insect specialist
right in your pocket
Download from AppStoreDownload from GooglePlayDownload from AppStore
Download from AppStore

Summary

Danaus chrysippus, also known as the plain tiger, African queen, or African monarch, is a medium-sized butterfly widespread in Asia, Australia and Africa. It belongs to the Danainae subfamily of the brush-footed butterfly family Nymphalidae. Danainae primarily consume plants in the genus Asclepias, more commonly called milkweed. Milkweed contains toxic compounds, cardenolides, which are often consumed and stored by many butterflies. Because of their emetic properties, the plain tiger is unpalatable to most predators. As a result, its coloration is widely mimicked by other species of butterflies. The plain tiger inhabits a wide variety of habitats, although it is less likely to thrive in jungle-like conditions and is most often found in drier, wide-open areas. D. chrysippus encompasses three main subspecies: D. c. alcippus, D. c. chrysippus, and D. c. orientis. These subspecies are found concentrated in specific regions within the larger range of the entire species. The plain tiger is believed to be one of the first butterflies depicted in art. A 3,500-year-old ancient Egyptian fresco in Luxor features the oldest known illustration of this species.

African Monarch

Danaus chrysippus
Local Pest Control

Tags

harmless

Scientific classification

People often ask

What does plain tiger butterfly eat?
Why does plain tiger butterfly have 4 legs?
How long does a plain tiger butterfly live?
Is the plain tiger butterfly poisonous?

Description

D. chrysippus is a medium-sized butterfly with a wingspan of about 7 –. The body is black with many white spots. The wings are orange, the upperside brighter and richer than the underside. The apical half of the forewing is black with a white band. The hindwing has three black spots in the center. The wings are bordered in black and outlined with semicircular white spots. This species exhibits slight sexual dimorphism, as the Male has large scent glands on his hindwings, which the female lacks. They appear as a large black spot with a white centre if viewed from the underside D. chrysippus is a polymorphic species, so the exact coloring and patterning vary within and between populations. It is similar in appearance to the Indian fritillary (Argynnis hyperbius), which may coexist with it.

Geographic range

The plain tiger is found across the entirety of Africa, where the predominant subspecies is D. c. alcippus. Its range extends across the majority of Asia throughout Indian subcontinent, as well as many south Pacific islands. The plain tiger is even present in parts of Australia. D. c. chrysippus is most common throughout Asia and in some select regions in Africa, while D. c. orientis is present in more tropical African regions as well as some African islands, including Madagascar and the Seychelles. It is also found in Southern Europe and Kuwait. These insects are considered bioinvaders in North America.

Larval food plants

The plain tiger's larval host plants are from several families, most importantly Asclepiadoideae (Apocynaceae): Host plants from other families include Dyerophytum indicum (Plumbaginaceae), Ficus (Moraceae; recorded on F. laevis, F. racemosa), Ipomoea (Convolvulaceae; recorded on I. alba, I. bona-nox), Lepisanthes rubiginosa (Sapindaceae) as well as some Euphorbiaceae, Malvaceae, Poaceae, Rosaceae and Scrophulariaceae. - Asclepias – milkweeds (recorded on A. cancellata, A. coarctata, A. curassavica, A. fulva, A. kaessneri, A. lineolata, A. physocarpa, A. reflexa, A. scabrifolia, A. semilunata, A. stenophylla, A. swynnertonii, A.syriaca) - Aspidoglossum interruptum - Calotropis – mudar (recorded on C. gigantea, C. procera) - Caralluma burchardii (recorded from Canary Islands/Spain) - Ceropegia dichotoma (recorded from Canary Islands/Spain) - Cryptolepis buchananii - Cynanchum (recorded on C. abyssinicum, C. acutum, C. altiscandens, C. amplexicaule, C. carnosum, C. floribundum, C. sublanceolatum) - Gomphocarpus fruticosus - Kanahia laniflora - Leichardtia australis - Leptadenia hastata - Marsdenia leichhardtiana - Metaplexis japonica - Orbea variegata (recorded from Canary Islands/Spain) - Oxystelma pulchellum - Pentatropis (recorded on P. atropurpurea, P. quinquepartita) - Pergularia daemia - Periploca linearifolia - Pleurostelma cernuum - Secamone (recorded on S. afzelii, S. parvifolia, S. platystigma) - Stapelia gigantea - Stathmostelma (recorded on S. gigantiflorum, S. pedunculatum) - Tylophora (recorded on T. stenoloba, T. sylvatica)

Adult food plants

Adult plain tiger butterflies obtain nectar from various flowering plants. The particular plants available vary depending on the geographic range of the butterfly population and the season, as certain plants do not flower throughout the entire year.

India

- Catharanthus roseus - Lantana camara - Vernonia cinerea - Tridax procumbens - Asystasia gangetica - Antigonon leptopus, January through April and August through December - Tecoma stans, May through December - Heliotropium indicum

Australia

In addition to nectar, adult plain tigers obtain pyrrolizidine alkaloids from the dead stems of different plant types. In Australia, the following plants have been identified as sources of pyrrolizidine alkaloids for D. chrysippus: - Goodenia maidenian - Eucalyptus conglobata - E. oleosa - Ptilotis obovata - Asclepias - Lantana - Leucopogon - Daviesia - Parsonsia eucalyptophylla - P. straminea - Echium plantogineum - Senecio pterophorus - Heliotropium amplexicaule

Oviposition

Females lay eggs singly on the underside of the leaves of a larval food plant. The eggs are most often laid close to the ground.

Egg

The egg of the plain tiger is about 1.7 mm long and 0.5 mm across. When first laid it is white, but gradually turns brown over time. The egg is ridged and dome-shaped. Depending on temperature, the egg is typically hatched in 3–5 days.

Caterpillar

The larvae of D. chrysippus proceeds through five instar stages. The first instar is about 4 mm long, and its body is white while the head is black. The second instar is about 8 mm long, and its body is primarily gray with yellow and black horizontal stripes. This coloration remains for the final three instar stages. The third instar is about 14 mm long, the fourth about 25 mm long, and the fifth about 36 mm long. Depending on temperature, the larval stage can last from 12 to 20 days.

Prepupal and pupal stages

Before pupation, the caterpillar will become motionless and cease feeding. Its color shifts slightly from gray to brown, and it may lose a small amount of body mass. The prepupal stage lasts 1–3 days depending on temperature. The pupal stage lasts 9–15 days depending on temperature, and the pupa changes color over this period from a pale green to dark brown. Pupae are about 17 mm tall and 8 mm wide.

Adult

Male and female D. chrysippus butterflies look very similar and are also similar in size. Adult butterflies typically have a wingspan of 75 mm. The bodies of adult plain tigers are about 23 mm long, and their antennae are about 12 mm long. Depending on temperature, males live about 10–15 days and females live about 7–12 days.

Egg and larval predators

Most predators of the early developmental stages of D. chrysippus are arthropods. Such potential predators include various kinds of spiders, assassin bugs, cockroaches, ladybugs, ants, and mantises. The caterpillars will even cannibalize each other. Egg and larval mortality is often high; as many as 84% of eggs may be lost to predation and up to 97% of larvae can be lost by the fifth instar, although most larval deaths occur during the third instar.

Adult predators

The most common predator of adult plain tigers are birds. In eastern Africa, the most common predator is the fiscal shrike L. c. humeralis.

Parasites

There are several organisms which parasitize the larvae of D. chrysippus. The fly S. flavohalterata of the Family Tachinidae is responsible for small amounts of parasitization in D. chrysippus populations. It is unclear whether the fly oviposits on the eggs of D. chrysippus or whether the fly oviposits on leaves which are then consumed by D. chrysippus larvae. S. flavohalterata does not kill the larvae, and development is normal until the pupal stage, when larvae dies and the parasite emerges from the pupa instead. A. chrysippi, a parasitic wasp of the family Braconidae, oviposits on larvae early in their development and then kills them in the later stages. As many as fifty wasps may emerge from one large caterpillar, and they then pupate on the deceased host. Parasitic wasps of the genus Charops also infest plain tiger populations, likely during the egg or first instar stage, and then kill the larvae in a later instar stage. Sturmia convergens is also a parasitoid of D. chrysippus.

Diseases

The plain tiger is infected by a male-killing bacterium called Spiroplasma. Male-killing bacteria are transmitted vertically, from mother to offspring. Female plain tigers infected with Spiroplasma will produce all-female broods, because the bacteria kills infected male offspring during either their embryonic or first larval instar stage. Although male-killing bacteria are uncommon in species which lay eggs singly, experimentally treating infected females with antibiotics restored an even sex ratio to their subsequent broods, thus indicating that it is indeed Spiroplasma which is responsible for all-female broods in D. chrysippus. However, the prevalence of this bacteria in the plain tiger seems to be restricted to east African populations.

Protective coloration and behavior

The plain tiger is mimicked by several species due to its unpalatability to potential predators. Previously, it was thought that cardenolides obtained from food sources during the larval stage were responsible for the aversive nature of adult D. chrysippus, but many larval food sources lack cardenolides, and some adult West African populations of D. chrysippus do not store cardenolides well, yet still repel predators. More recently, pyrrolizidine alkaloids have been proposed to be also responsible for the unpalatability of D. chrysippus. Adult male danaines often feed on plants containing pyrrolizidine alkaloids, and although females rarely do, they may be protected simply through their resemblance to males of the same species. The ability of D. chrysippus to store cardenolides varies across populations, so likely both cardenolides and pyrrolizidine alkaloids contribute to the unpalatability of D. chrysippus to different extents depending on the population. Because the plain tiger is unpalatable (also called inedible), they are aposematic - their bright coloration serves as a warning to predators that they are either distasteful or toxic. Consequently, once a predator has made the mistake of attempting to eat a plain tiger, they will refrain in the future from attacking similarly colored butterflies. This has led to the evolution of a number of other species which mimic the plain tiger in order to co-opt the protection conferred by such bright coloration.

Batesian mimicry

Batesian mimics are palatable species which mimic unpalatable species, and D. chrysippus is a model for several Batesian mimics, including H. misippus, P. poggei, M. marshalli, and P. dardanus in east Africa. Batesian mimicry is only effective so long as the mimic is less common than the model, or predators will learn that the mimics are in fact edible and then attempt to eat the similar-looking unpalatable butterflies.

Müllerian mimicry

Müllerian mimicry occurs when multiple species which are all unpalatable evolve to resemble one another. In this case, the relative abundance of each species does not have a deleterious effect on any others, because a predator which eats any one of them will be deterred from eating any similar-looking butterflies. In Uganda, D. chrysippus has several Müllerian mimics, including A. encedon and A. encedana.

Genomes

When D. chrysippus was analyzed via a sample from Kampala, Uganda, it was found that the population was undergoing a significant level of evolutionary change. Three loci were examined, and genotypic frequency differences found at two of the three suggested that opposing selective forces, likely pertaining to Mullerian and Batesian mimicry, acting on males and females is contributing to a balanced polymorphism.

Courtship and mating

In addition to conferring protection from predators, pyrrolizidine alkaloids are necessary in the mating ritual of D. chrysippus. Male plain tigers use the alkaloids to synthesize pheromones which are stored in hair-pencils sheathed in alar organs, which are specialized scales on top of the hindwing. The hair-pencils are fanned out during courtship to release these pheromones, and this appears to be necessary for attracting females. Males deprived of pyrrolizidine alkaloids in their diet are considerably less successful in mating; mating appears to occur preferentially between butterflies of the same subspecies, so coloration is likely also an important signal in the mating process. Female plain tigers have been recorded as mating up to four times.

Courtship and matingCourtship and mating